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What is the core idea of Interactive Data Visualization?
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CHAPTER 4

Visualization Foundations

We have now covered the start and the end of the visualization pipeline
(see Figure 4.1), namely getting data into the computer, and, on the human
side, how perception and cognition help us interpret images. We have looked
at one fundamental visualization, namely the scatterplot. There are many
other visualization techniques and systems (see some examples in Table 4.1).
To make sense of them we need to organize methods into categories or tax-
onomies. This is necessary for us to structure our study of the field. We first
review the visualization pipeline and then discuss various ways to view the
multitudes of techniques and systems that have been developed to date.

Figure 4.1. Our reference visualization pipeline. (Image modified from [59].)
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The Visualization Process in Detail

! Data preprocessing and transformation 


" Process the raw data into something usable by the visualization system. 


− The first part is to make sure that the data are mapped to fundamental data types


− The second step entails dealing with specific application data issues.


! Mapping for visualizations 


" Decide on a specific visual representation.


− This requires representation mappings: geometry, color, and sound, for example. 


! Rendering transformations. 


" The final stage involves mapping from geometry data to the image


− This stage of the pipeline is very dependent on the underlying graphics library.
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Expressiveness and Effectiveness

! Expressiveness 


" An expressive visualization presents all the information, and only the information 


" Mexp = The information that we actually display to the user / information we want 

to present to the user


" 0 ≤ Mexp ≤ 1. 


" If Mexp = 1, we have ideal expressiveness 


" If the information displayed is less than that desired, then Mexp < 1. 


" If Mexp > 1, we are presenting too much information. 


− Expressing additional information is potentially dangerous, because it may not be 

correct and may interfere with the interpretation of the essential information.
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Expressiveness and Effectiveness

! Effectiveness 


" A visualization is effective when it can be interpreted accurately and quickly and 

when it can be rendered in a cost-effective manner. 


" Effectiveness thus measures a specific cost of information perception.


" Meff = 1 / (1 + timeinterpret + timerender). 


" 0 < Meff  ≤ 1. 


" The larger Meff is, the greater the visualization’s effectiveness. 


" If Meff is small, then either the interpretation time is very large, or the rendering 

time is large. 


" If Meff is large (close to 1), then both the interpretation and the rendering time are 

very small.
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Mexp(a) ≈ Mexp (b)
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Expressiveness and Effectiveness
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The information in (b) can be interpreted more accurately or more quickly than that in (a) for 
some questions. For example, which car has the best mileage? 


However, if we ask which car has the best mileage under $11,000? 
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Semiology of Graphical Symbols

! The science of graphical symbols and marks is called semiology. 


! Every possible construction in the Euclidean plane is a graphical 

representation made up of graphical symbols (diagrams, networks, maps, 

plots, and other common visualizations).


! Semiology uses the qualities of the plane and objects on the plane to produce 

similarity features, ordering features, and proportionality features of the data 

that are visible for human consumption.
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Semiology of Graphical Symbols

! Discovery of relations or patterns occurs through a mapping between any 

relationship of the graphic symbols and the data that these symbols 

represent. 


" any pattern on the screen must imply a pattern in the data. 


− If it does not, then it is an artifact of the selected representation (and is 

disturbing).


" Similarly, any perceived pattern variation in the graphic or symbol cognitively 

implies such a similar variation in the data. 


" Any perceived order in graphic symbols is directly correlated with a perceived 

corresponding order between the data, and vice versa 
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Features of Graphics

! Graphics have three (or more) dimensions.


! Every point of the graphic can be interpreted as a relation between a position 

in x and a position in y. The points vary in size, providing a third dimension or 

variable to interpret. 
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Rules of Graphics

! The aim of a graphic is to discover groups or orders in x, and groups or 

orders in y, that are formed on z-values; 

20
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Rules of Graphics

! The aim of a graphic is to discover groups or orders in x, and groups or 

orders in y, that are formed on z-values; 


! (x, y, z)-construction enables in all cases the discovery of these groups; 


! Within the (x,y,z)-construction, permutations and classifications solve the 

problem of the upper level of information;


! Every graphic with more than three factors that differs from the (x, y, z)-

construction destroys the unity of the graphic and the upper level of 

information;


! Pictures must be read and understood by the human.
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Spatial arrangement of marks

! For the most part, all graphic primitives will be termed marks. 


! One way to encode data for display is to map different data values to different 

marks and their attributes. 


! However, marks by themselves do not define informative displays, since all the 

marks would simply obscure all previously drawn marks; it is only through the 

spatial arrangement of marks that informative displays are created. 


! Once the layout and types of marks are specified, then additional graphical 

properties can be applied to each mark. 


" Marks can vary in size, can be displayed using different colors, and can be 

mapped to different orientations, all of which can be driven by data to convey 

information.
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Eight visual variables

! eight visual variables: 


" position,


" shape,


" size, 


" brightness,


" color,


" orientation,


" texture,


" motion 

24

The first and The first and most 

important visual variable is that 

of position is that of position

See the slides from lecture 1
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Eight visual variables: Position

! The first and most important visual variable is that of position, the placement of 

representative graphics within some display space, be it one-, two-, or three-

dimensional.


! Spatial arrangement of graphics is the first step in reading a visualization:


" The maximization of the spread of representational graphics throughout the 

display space maximizes the amount of information communicated, to some 

degree.


" Worst case positioning scheme maps all graphics to the exact same position 


" Best positioning scheme maps each graphic to unique positions, such that all the 

graphics can be seen with no overlaps.
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Eight visual variables: Position - Scales
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4.3. The Eight Visual Variables 149

(a) (b)

Figure 4.7. Example visualizations: (a) using position to convey information. Displayed here

is the minimum price versus the maximum price for cars with a 1993 model year.
The spread of points appears to indicate a linear relationship between minimum

and maximum price; (b) another visualization using a different set of variables.
This figure compares minimum price with engine size for the 1993 cars data set.

Unlike (a), there does not appear to be a strong relationship between these two

variables.

logarithmic scale that is used to map exponentially increasing variables into
more compact ranges.

Although linear and logarithmic scales are applied to a single data vari-
able, there are times when two-dimensional based mappings need to be ap-
plied, especially for cartography and the generation of maps. The mapping
of two or more variables is more correctly termed a projection from one data
space to another, the second generally of a lower dimensionality. Various pro-
jections used for defining maps are presented in Chapter 6. Many of these
projection techniques can also be used for nonspatial data, as described in
Chapter 8.

In addition to displaying representational graphics and using various
scales or projections, when working with one, two, or three variables, it
is common to add supplementary graphics to describe the space. Axes are
graphical elements that provide additional information for understanding
how the visual space is defined. Axes typically contain tick-marks indi-
cating intervals of the data range, and text labels that provide data val-
ues. An axis title usually contains the name of the data variable being
mapped.
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Eight visual variables: Mark (or shape)

! The second visual variable is the mark or shape: points, lines, areas, volumes, and 

their compositions. 


! Marks are graphic primitives that represent data:


" When using marks, it is important to consider  

how well one mark can be differentiated from 

other marks

29
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Figure 4.8. Several examples of different marks or glyphs that can be used.

4.3.2 Mark

The second visual variable is themark or shape: points, lines, areas, volumes,
and their compositions. Marks are graphic primitives that represent data.
For example, both visualizations in Figure 4.7 use the default point to display
individual values. Any graphical object can be used as a mark, including
symbols, letters, and words (see Figure 4.8). When working purely with
marks, it is important not to consider differences in sizes, shades of intensity,
or orientation, as these are additional visual variables that will be described
later.

When using marks, it is important to consider how well one mark can
be differentiated from other marks. Within a single visualization there can
be hundreds or thousands of marks to observe; therefore, we try not to se-
lect marks that are too similar. For example, a set of marks that provides
easy reading is shown in Figure 4.8 and used in a scatterplot in Figure 4.9.

Figure 4.9. This visualization uses shapes to distinguish between different car types in a plot
comparing highway MPG and horsepower. Clusters are clearly visible, as well as

some outliers.

Tableau
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Eight visual variables: Mark (or shape)
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Eight visual variables

! The position and marks, are required to define a visualization. Without these 

two variables there would not be much to see !


! The remaining visual variables affect the way individual representations are 

displayed; 


! These are the graphical properties of marks other than their shape. 
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Eight visual variables: Size

! Size easily maps to interval and continuous data variables, because that property 

supports gradual increments over some range. 


! It is more difficult to distinguish between marks of near similar size, and thus size 

can only support categories with very small cardinality. 


! A confounding problem with using size is the type of mark.


" For points, lines, and curves the use of size works well


" when marks are represented with graphics that contain sufficient area, the 

quantitative aspects of size fall, and the differences between marks becomes more 

qualitative. 

32
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Figure 4.10. Example sizes to encode data.

Another is the set (T and L) or (+ and −), that harnesses our perceptual
systems (see examples in Chapter 3). The goal is to be able to easily distin-
guish between different marks quickly, while maintaining an overall view of
the projected data space. Also, different mark shapes in a given visualiza-
tion must have similar area and complexity, to avoid visually emphasizing
one or more of them inadvertently.

4.3.3 Size (Length, Area, and Volume)

The previous two visual variables, position and marks, are required to define
a visualization. Without these two variables there would not be much to see.
The remaining visual variables affect the way individual representations are
displayed; these are the graphical properties of marks other than their shape.

The third visual variable and first graphic property is size. Size de-
termines how small or large a mark will be drawn (see Figure 4.10). Size
easily maps to interval and continuous data variables, because that property
supports gradual increments over some range. And while size can also be
applied to categorical data, it is more difficult to distinguish between marks
of near similar size, and thus size can only support categories with very small
cardinality.

A confounding problem with using size is the type of mark. For points,
lines, and curves the use of size works well, in that size provides a relatively
quantifiable measure of how marks relate, as illustrated in Figure 4.11. How-
ever, when marks are represented with graphics that contain sufficient area,
the quantitative aspects of size fall, and the differences between marks be-
comes more qualitative.

4.3.4 Brightness

The fourth visual variable is brightness or luminance. Brightness is the
second visual variable used to modify marks to encode additional data vari-
ables. While it is possible to use the complete numerical range of brightness
values, as discussed in Chapter 3, human perception cannot distinguish be-
tween all pairs of brightness values. Consequently, brightness can be used

Stevens’ Law
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Eight visual variables: Size
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Stevens’ Law
132 3. Human Perception and Information Processing

Figure 3.35. Illustration of Stevens’ Law. The size ratio for each pair is 1:4. This magnitude
is readily apparent in the lines, but it is easily underestimated in the squares and

cubes.

This seems to support the idea that bar charts and scatterplots are ef-
fective tools for communicating quantitative data, as they both depend on
position along a common scale. It also suggests that pie charts are probably
not as effective a mechanism, as one is either judging area or angles.

Two important principles came into play with these experiments. The
first, named Weber’s Law , states that the likelihood of detecting a change
is proportional to the relative change, not the absolute change, of a graph-
ical attribute. Thus, the difference between a 25-centimeter line and a 26-
centimeter line should be no easier to perceive than the difference between a
2.5- and a 2.6-centimeter line. This means that simply enlarging an object
or otherwise changing the range of one of its attributes will not, in general,
increase its effectiveness at communicating information.

A second useful principle, known as Stevens’ Law , states that the per-
ceived scale in absolute measurements is the actual scale raised to a power.
For linear features, this power is between 0.9 and 1.1; for area features, it
is between 0.6 and 0.9, and for volume features it is between 0.5 and 0.8.
This means that as the dimensionality of an attribute increases, so increases
the degree at which we underestimate it. This implies that using attributes
such as the volume of a three-dimensional object to convey information is
much less effective and much more error-prone than using area or, better
yet, length (see Figure 3.35).

3.5.5 Expanding Capabilities

The experiments described in the previous three sections indicate that our
abilities to perceive various stimuli, and graphical phenomena in particu-
lar, is fairly limited. If we need to communicate information with a higher
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Figure 4.11. This is a visualization of the 1993 car models data set, showing engine size versus

fuel tank capacity. Size is mapped to maximum price charged.

to provide relative difference for large interval and continuous data vari-
ables, or for accurate mark distinction for marks drawn using a reduced
sampled brightness scale, as shown in Figure 4.12. Furthermore, it is rec-
ommended that a perceptually linear brightness scale be used, which de-
fines a step-based brightness scale that maximizes perceived differences. An
example visualization using brightness to display information is shown in
Figure 4.13.

4.3.5 Color

The fifth visual variable is color; see Chapter 3 for a detailed discussion of
color and of how humans perceive color. While brightness affects how white
or black colors are displayed, it is not actually color. Color can be defined
by the two parameters, hue and saturation. Figure 4.14 displays Microsoft’s
color selector with hue on the horizontal axis and saturation on the vertical
axis. Hue provides what most think of as color: the dominant wavelength

Figure 4.12. Brightness scale for mapping values to the display.
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Eight visual variables: Brightness (ou luminance)

! Brightness is the second visual variable used to modify marks to encode additional 

data variables. 


! While it is possible to use the complete numerical range of brightness values, human 

perception cannot distinguish between all pairs of brightness values. 


! Brightness can be used to provide relative difference for large interval and 

continuous data variables, 


! or for mark distinction for marks drawn using a reduced sampled brightness scale.

36
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Eight visual variables: Brightness (ou luminance)
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Figure 4.13. Another visualization of the 1993 car models data set, this time illustrating the use

of brightness to convey car width (the darker the points, the wider the vehicle).

Figure 4.14. Microsoft hue/saturation color selector.

from the visual spectrum. Saturation is the level of hue relative to gray, and
drives the purity of the color to be displayed.

The use of color to display information requires mapping data values to
individual colors. The mapping of color usually entails defining color maps
that specify the relationship between value ranges and color values. Color
maps are useful for handling both interval and continuous data variables,
since a color map is generally defined as a continuous range of hue and sat-
uration values, as illustrated in Figure 4.15 and Figure 4.16. When working
with categorical or interval data with very low cardinality, it is generally
acceptable to manually select colors for individual data values, which are se-
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Eight visual variables: Color

! Color maps are useful for handling both interval and continuous data variables, since 

a color map is generally defined as a continuous range of hue and saturation values

38
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Eight visual variables: Color

! When working with categorical or interval data with very low cardinality, it is generally 

acceptable to manually select colors for individual data values, which are selected to 

optimize the distinction between data types

39
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Eight visual variables: Color

! Check and try with: www.colorbrewer2.org 
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http://www.colorbrewer2.org
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Eight visual variables: Orientation

! Orientation is a principal graphic component behind iconographic stick figure 

displays, and is tied directly to preattentive vision.


! The best marks for using orientation are those with a natural single axis; the graphic 

exhibits symmetry about a major axis. 
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Eight visual variables: Orientation
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Eight visual variables: Texture

! Texture can be considered as a combination of many of the other visual variables, 

including marks (texture elements), color (associated with each pixel in a texture 

region), and orientation (conveyed by changes in the local color). 


! Texture is most commonly 

associated with a polygon, 

region, or surface. 

49
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Eight visual variables: Texture
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Eight visual variables: Motion

! Motion can be associated with any of the other visual variables, since the way a 

variable changes over time can convey more information.


! One common use of motion is in varying the speed at which a change is occurring 

(such as position change or flashing, which can be seen as changing the opacity).


! The other aspect of motion is in the direction for position, this can be up, down, left, 

right, diagonal, or basically any slope, while for other variables it can be larger/

smaller, brighter/dimmer, steeper/shallower angles, and so on.
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Effects of Visual Variables

! Selective visual variables:


" After coding with such variables, different data values are 

spontaneously divided by the human into distinguished groups (e.g., 

for visualizing nominal values). 


! Associative visual variables:


" All factors have same visibility (e.g., for visualizing nominal values). 


! Ordinal visual variables:


" After coding with such variables, different data values are 

spontaneously ordered by the human into distinguished groups (e.g., 

for visualizing ordinal and quantitative data).
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Effects of Visual Variables

! Check the slides by Sheelagh Carpendale, University of Calgary


" https://pages.cpsc.ucalgary.ca/~saul/hci_topics/pdf_files/visual-variables.pdf


! For each graphic attribute evaluates its use for each visual variable:


" selective (is a change enough to allow us to select it from a group?)


" associative (is a change enough to allow us to perceive them as a group?)


" quantitative (is there a numerical reading obtainable from changes in this 

variable?)


" order (are changes in this variable perceived as ordered?)


" length (across how many changes in this variable are distinctions 

perceptible?)
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https://pages.cpsc.ucalgary.ca/~saul/hci_topics/pdf_files/visual-variables.pdf


Visualization Foundations - 

Effects of Visual Variables (by Sheelagh Carpendale)
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Effects of Visual Variables (by Sheelagh Carpendale)
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Effects of Visual Variables (by Sheelagh Carpendale)
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Effects of Visual Variables (by Sheelagh Carpendale)
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(Brightness)
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Effects of Visual Variables (by Sheelagh Carpendale)
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Effects of Visual Variables (by Sheelagh Carpendale)
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Effects of Visual Variables (by Sheelagh Carpendale)
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Effects of Visual Variables (by Sheelagh Carpendale)

! Check the slides by Sheelagh Carpendale, University of Calgary


" https://pages.cpsc.ucalgary.ca/~saul/hci_topics/pdf_files/visual-variables.pdf


! For each graphic attribute evaluates its use for each visual variable:


" selective (is a change enough to allow us to select it from a group?)


" associative (is a change enough to allow us to perceive them as a group?)


" quantitative (is there a numerical reading obtainable from changes in this 

variable?)


" order (are changes in this variable perceived as ordered?)


" length (across how many changes in this variable are distinctions 

perceptible?)
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Marks and Channels by Tamara Munzner

63



 Visualization Foundations - 

Channel Rankings 
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102 5. Marks and Channels

Magnitude Channels: Ordered Attributes Identity Channels: Categorical Attributes

Spatial region

Color hue

Motion

Shape

Position on common scale

Position on unaligned scale

Length (1D size)

Tilt/angle

Area (2D size)

Depth (3D position)

Color luminance

Color saturation

Curvature

Volume (3D size)

Channels: Expressiveness Types and E!ectiveness Ranks

Figure 5.6. Channels ranked by effectiveness according to data and channel type. Ordered data should be shown
with the magnitude channels, and categorical data with the identity channels.

types. This primacy of spatial position applies only to 2D positions
in the plane; 3D depth is a much lower-ranked channel. These

! The limitations and ben-
efits of 3D are covered in
Section 6.3. fundamental observations have motivated many of the vis idioms

illustrated in this book, and underlie the framework of idiom design
choices. The choice of which attributes to encode with position is
the most central choice in visual encoding. The attributes encoded
with position will dominate the user’s mental model—their internal
mental representation used for thinking and reasoning—compared
with those encoded with any other visual channel.

These rankings are my own synthesis of information drawn
from many sources, including several previous frameworks, exper-
imental evidence from a large body of empirical studies, and my
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104 5. Marks and Channels

Figure 5.7. Stevens showed that the apparent magnitude of all sensory channels
follows a power law S = In, where some sensations are perceptually magnified
compared with their objective intensity (when n > 1) and some compressed (when
n < 1). Length perception is completely accurate, whereas area is compressed
and saturation is magnified. Data from Stevens [Stevens 75, p. 15].

brightness results in a perception that is considerably less than
twice as bright. The superlinear phenomena are magnified: dou-
bling the amount of electric current applied to the fingertips results
is a sensation that is much more than twice as great. Figure 5.7
shows that length has an exponent of n = 1.0, so our perception of
length is a very close match to the true value. Here length means
the length of a line segment on a 2D plane perpendicular to the ob-
server. The other visual channels are not perceived as accurately:
area and brightness are compressed, while red–gray saturation is
magnified.

Another set of answers to the question of accuracy comes from
controlled experiments that directly map human response to vi-
sually encoded abstract information, giving us explicit rankings of
perceptual accuracy for each channel type. For example, Cleveland
and McGill’s experiments on the magnitude channels [Cleveland
and McGill 84a] showed that aligned position against a common
scale is most accurately perceived, followed by unaligned position
against an identical scale, followed by length, followed by angle.
Area judgements are notably less accurate than all of these. They
also propose rankings for channels that they did not directly test:
after area is an equivalence class of volume, curvature, and lumi-
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Error rates (Cleveland and McGill [Cleveland and McGill 84a]. After [Heer and Bostock])
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5.5. Channel Effectiveness 105

Positions

Rectangular 
areas 

(aligned or in a 
treemap)

Angles

Circular 
areas

Cleveland & McGill’s  Results

Crowdsourced Results

1.0 3.01.5 2.52.0
Log Error

1.0 3.01.5 2.52.0
Log Error

Figure 5.8. Error rates across visual channels, with recent crowdsourced results replicating and extending seminal
work from Cleveland and McGill [Cleveland and McGill 84a]. After [Heer and Bostock 10, Figure 4].

nance; that class is followed by hue in last place. (This last place
ranking is for hue as a magnitude channel, a very different matter
than its second-place rank as a identity channel.) These accuracy
results for visual encodings dovetail nicely with the psychophysical
channel measurements in Figure 5.7. Heer and Bostock confirmed
and extended this work using crowdsourcing, summarized in Fig-
ure 5.8 [Heer and Bostock 10]. The only discrepancy is that the
later work found length and angle judgements roughly equivalent.
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Cleveland & McGill’s  Results

Crowdsourced Results

1.0 3.01.5 2.52.0
Log Error

1.0 3.01.5 2.52.0
Log Error

Figure 5.8. Error rates across visual channels, with recent crowdsourced results replicating and extending seminal
work from Cleveland and McGill [Cleveland and McGill 84a]. After [Heer and Bostock 10, Figure 4].

nance; that class is followed by hue in last place. (This last place
ranking is for hue as a magnitude channel, a very different matter
than its second-place rank as a identity channel.) These accuracy
results for visual encodings dovetail nicely with the psychophysical
channel measurements in Figure 5.7. Heer and Bostock confirmed
and extended this work using crowdsourcing, summarized in Fig-
ure 5.8 [Heer and Bostock 10]. The only discrepancy is that the
later work found length and angle judgements roughly equivalent.
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5.5. Channel Effectiveness 107

Figure 5.9. Linewidth has a limited number of discriminable bins.

is obvious that the third channel precludes the use of the first two.
However, some of the interchannel interference is less obvious.

Figure 5.10 shows pairs of visual channels at four points along
this continuum. On the left is a pair of channels that are com-
pletely separable: position and hue. We can easily see that the
points fall into two categories for spatial position, left and right.
We can also separately attend to their hue and distinguish the red
from the blue. It is easy to see that roughly half the points fall into
each of these categories for each of the two channels.

Next is an example of interference between channels, showing
that size is not fully separable from color hue. We can easily distin-
guish the large half from the small half, but within the small half
discriminating between the two colors is much more difficult. Size
interacts with many visual channels, including shape.
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108 5. Marks and Channels

Position
    Hue (Color)

Size
    Hue (Color)

Width
    Height

Red
    Green

Fully separable Some interference Some/signi!cant 
interference

Major interference

Figure 5.10. Pairs of visual channels fall along a continuum from fully separable
to intrinsically integral. Color and location are separable channels well suited to
encode different data attributes for two different groupings that can be selectively
attended to. However, size interacts with hue, which is harder to perceive for small
objects. The horizontal size and and vertical size channels are automatically fused
into an integrated perception of area, yielding three groups. Attempts to code
separate information along the red and green axes of the RGB color space fail,
because we simply perceive four different hues. After [Ware 13, Figure 5.23].

The third example shows an integral pair. Encoding one vari-
able with horizontal size and another with vertical size is ineffective
because what we directly perceive is the planar size of the circles,
namely, their area. We cannot easily distinguish groupings of wide
from narrow, and short from tall. Rather, the most obvious per-
ceptual grouping is into three sets: small, medium, and large. The
medium category includes the horizontally flattened as well as the
vertically flattened.

The far right on Figure 5.10 shows the most inseparable chan-
nel pair, where the red and green channels of the RGB color space
are used. These channels are not perceived separately, but inte-
grated into a combined perception of color. While we can tell that
there are four colors, even with intensive cognitive effort it is very
difficult to try to recover the original information about high and
low values for each axis. The RGB color system used to specify
information to computers is a very different model than the color
processing systems of our perceptual system, so the three chan-
nels are not perceptually separable.

! Color is discussed in de-
tail in Section 10.2.

Integrality versus separability is not good or bad; the important
idea is to match the characteristics of the channels to the informa-
tion that is encoded. If the goal is to show the user two different
data attributes, either of which can be attended to selectively, then
a separable channel pair of position and color hue is a good choice.
If the goal is to show a single data attribute with three categories,
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Historical Perspective

! Bertin (1967) Semiology of Graphics 


! Mackinlay (1986) APT 


! Bergeron and Grinstein (1989) Visualization Reference Model 


! Wehrend and Lewis (1990)


! Robertson (1990) Natural Scene Paradigm 


! Roth (1991) Visage and SAGE


! Casner (1991) BOZ 


! Beshers and Feiner (1992) AutoVisual

72



Visualization Foundations - 

Historical Perspective

! Senay and Ignatius (1994) VISTA 


! Hibbard (1994) Lattice Model


! Golovchinsky (1995) AVE 


! Card, Mackinlay, and Shneiderman (1999) Spatial Substrate 


! Kamps (1999) EAVE 


! Wilkinson (1999) Grammar of Graphics 


! Hoffman (2000) Table Visualizations
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Historical Perspective

! In 1967, Jacques Bertin, possibly the most important figure in 

visualization theory, published his Sémiologie Graphique.
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Historical Perspective

! Mackinlay (1986) introduced a design for an automated graphical 

presentation designer of relational information, named APT (A 

Presentation Tool) 


! Mackinlay went on to describe graphical languages, defining graphical 

presentations as sentences of these languages. Two graphic design 

criteria: expressiveness criterion, the effectiveness criterion, 


! The important aspect of Mackinlay’s work pertains to his composition 

algebra, a collection of primitive graphic languages and composition 

operators that can form complex presentations.
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Keller and Keller (1994) Taxonomy of Visualization Goals

! Task list 


" identify: establish characteristics by which an object is recognizable 


" locate: ascertain the position (absolute or relative); 


" distinguish: recognize as distinct or different (identification is not needed); 


" categorize: place into divisions or classes; 


" cluster: group similar objects 


" rank: assign an order or position relative to other objects 


" compare: notice similarities and differences; 


" associate: link or join in a relationship that may or may not be of the same type;


" correlate: establish a direct connection, such as causal or reciprocal. 
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Further Reading and Summary
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Q&A



Visualization Foundations - 

Further Reading
! Pag 139 - 180 from  Interactive Data Visualization: Foundations, Techniques, and 

Applications, Matthew O. Ward, Georges Grinstein, Daniel Keim, 2015 


! Pag 42 - 64 from Visualization Analysis & Design, Tamara Munzner


! Check the slides by Sheelagh Carpendale, University of Calgary


− https://pages.cpsc.ucalgary.ca/~saul/hci_topics/pdf_files/visual-variables.pdf

79Further Reading and Summary

https://pages.cpsc.ucalgary.ca/~saul/hci_topics/pdf_files/visual-variables.pdf


Visualization Foundations - 

What you should know

! The Visualization Process


! Expressiveness and Effectiveness


! The fundamental ideas of Semiology of Graphical Symbols


! data -> (x, y, z*)	 


! The eight visual variables(VV)


! position, shape - Why they are the most important !


! the others VVs


! Effects of Visual Variables


! selective, associative, quantitative, order


! Tasks list(s)


! Why it is important to consider a task; Why it is important to consider a taxonomy 
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One more thing !
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Interactive Data Visualization

General Rules for Exploratory Data Analysis

82

Exploratory Data Analysis with R
Roger D. Peng
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Principles of Analytic Graphics

! Principle 1: Show comparisons


" Evidence for a hypothesis is always relatives another competing hypothesis


" Always ask “Compared to What?"

83

Reference: Butz AM, et al., JAMA Pediatrics, 2011. 

Testing whether an air cleaner installed in a child’s home improves 
their asthma-related symptoms. 


This study was conducted at the Johns Hopkins University School of 
Medicine and was conducted in homes where a smoker was living for at 
least 4 days a week. 


Each child was assessed at baseline and then 6-months later at a second 
visit. The aim was to improve a child’s symptom-free days over the 6-
month period. In this case, a higher number is better, indicating that they 
had more symptom-free days. 
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! Principle 1: Show comparisons


" Evidence for a hypothesis is always relatives another competing hypothesis


" Always ask “Compared to What?"
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Reference: Butz AM, et al., JAMA Pediatrics, 2011. 
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! Principle 1: Show comparisons


" Evidence for a hypothesis is always relatives another competing hypothesis


" Always ask “Compared to What?"
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Reference: Butz AM, et al., JAMA Pediatrics, 2011. 
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Principles of Analytic Graphics

! Principle 1: Show comparisons


" Evidence for a hypothesis is always relatives another competing hypothesis


" Always ask “Compared to What?”


" Principle 2: Show causality, mechanism, explanation, systematic structure 


" What is your causal framework for thinking about a question? 
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Air quality standards in the U.S. concerns the 
long-term average level of fine particle 
pollution, also referred to as PM2.5 


The standard says that the “annual mean, 
averaged over 3 years” cannot exceed 12 
micrograms per cubic meter.
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Principles of Analytic Graphics

" Principle 2: Show causality, mechanism, explanation, systematic structure 


" What is your causal framework for thinking about a question? 

88

Reference: Butz AM, et al., JAMA Pediatrics, 2011. 
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Principles of Analytic Graphics

! Principle 1: Show comparisons


! Principle 2: Show causality, mechanism, explanation, systematic structure 


! Principle 3: Show multivariate data 


" Multivariate = more than 2  variables 


" The real world is multivariate


" Need to “escape flatland"
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Principles of Analytic Graphics

! Principle 3: Show multivariate data 

90

it seems that there is a slight negative 
relationship between the two variables. 


That is, higher daily average levels of PM10 
appear to be associated with lower levels of 
mortality (fewer deaths per day). 

Reference: Butz AM, et al., JAMA Pediatrics, 2011. 
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Principles of Analytic Graphics

! Principle 3: Show multivariate data 

91

Reference: Butz AM, et al., JAMA Pediatrics, 2011. 

mortality tends to be higher in the 
winter than in the summer 
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Principles of Analytic Graphics

! Principle 3: Show multivariate data 
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Reference: Butz AM, et al., JAMA Pediatrics, 2011. 

PM10 levels tend to be high in the 
summer and low in the winter. 
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Principles of Analytic Graphics

! Principle 3: Show multivariate data 
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Reference: Butz AM, et al., JAMA Pediatrics, 2011. 

There is a slight positive 
relationship between the two 
variables in each season
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Principles of Analytic Graphics

! Principle 1: Show comparisons


! Principle 2: Show causality, mechanism, explanation, systematic structure 


! Principle 3: Show multivariate data


! Principle 4: Integration of evidence 


! Completely integrate words, numbers, images, diagrams


! Data graphics should make use of many modes of data presentation 


! Don’t let the tool drive the analysis 
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Principles of Analytic Graphics

! Principle 4: Integration of evidence
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Reference: Butz AM, et al., JAMA Pediatrics, 2011. 

Ideally, a plot would have all of the necessary 
descriptions attached to it. 


You might think that this level of documentation 
should be reserved for “final” plots as opposed to 
exploratory ones, but it’s good to get in the habit 
of documenting your evidence sooner rather than 
later. 
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Principles of Analytic Graphics

! Principle 1: Show comparisons


! Principle 2: Show causality, mechanism, explanation, systematic structure 


! Principle 3: Show multivariate data


! Principle 4: Integration of evidence 


! Principle 5: Describe and document the evidence with appropriate labels, 

scales, sources
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Principles of Analytic Graphics

! Principle 5: Describe and document the evidence with appropriate labels, 

scales, sources
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Reference: Butz AM, et al., JAMA Pediatrics, 2011. 

Defaults
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Principles of Analytic Graphics

! Principle 1: Show comparisons


! Principle 2: Show causality, mechanism, explanation, systematic structure 


! Principle 3: Show multivariate data


! Principle 4: Integration of evidence 


! Principle 5: Describe and document the evidence with appropriate labels, 

scales, sources


! Principle 6: Content is King


! Analytical presentations ultimately stand or fall depending on the quality, 

relevance, and integrity of their content.
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! Principle 1: Show comparisons


! Principle 2: Show causality, mechanism, explanation, systematic structure 


! Principle 3: Show multivariate data


! Principle 4: Integration of evidence 


! Principle 5: Describe and document the evidence with appropriate labels, 

scales, sources


! Principle 6: Content is King

99

Reference: Butz AM, et al., JAMA Pediatrics, 2011. 

Edward Tufte (2006). Beautiful Evidence, 
Graphics Press LLC.


www.edwardtufte.com 


